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Abstract— Simultaneously controlling multiple robots requires 

multiple operators working together as a team. Determining how 
to construct the team to promote performance and reduce 
workload are critical questions that must be answered in these 
settings. To this end, we investigated the effect of team structure 
and scheduling notification on operators’ performance, 
subjective workload, work processes and communication using a 
human-in-the-loop experiment. In an urban search and rescue 
setting, we compared a pooled condition, in which team members 
shared control of 24 robots, with a sector condition, in which 
each team member controlled half of all the robots. For 
scheduling notification, an alert was given when the operator 
spent too much time on one robot and either suggested or forced 
the operator to change to another robot. A discrete-event 
simulation model was constructed to model the teamwork in 
supervisory control of multiple robots. The model was 
significantly improved by the inclusion of a behavior termed as 
“backup”. Backup behavior is a critical coordination mechanism 
often observed in teams, but rarely explicitly modeled. Pooled 
teams showed an advantage when performing backup behaviors 
in both the experiment and the model. However, other factors 
must be considered when making a decision on what team 
structure to use. 
 

Index Terms—Backup behavior, teamwork, discrete-event 
simulation, human supervisory control, robots 
 

I. INTRODUCTION 
DVANCES in technology have enabled increasingly 
sophisticated automated systems to be applied to a 

number of fields including manufacturing, aviation, command 
and control, search and rescue, air traffic control and health 
care. Unlike autonomous systems designed primarily to take 
humans out of the loop, many future systems will support 
people and agents working together. Despite the benefits of 
such automation technologies, challenges exist for the 
successful integration of human operator and automation 
technologies.  

In recent years, there is an increasing interest in enabling 
one operator controlling multiple agents with higher levels of 
autonomy. By releasing the operators from manual control, 
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enhanced autonomy enables operators to work with multiple 
agents and perform a more diverse set of tasks requiring 
monitoring, coordination, and complex decision-making. 
However, the required cognitive load for working with 
multiple agents could easily exceed the capacity of a single 
operator, even with high levels of automation. Teams of 
humans are increasingly called upon to perform complex 
cognitive tasks that are less efficiently done or impossible to 
do by an individual. Operators in such teams typically have to 
communicate in order to make effective decisions including 
the distribution or assignment of tasks, updating of status, 
seeking help, maintaining coordination, and exchanging 
information. Although teamwork may impose extra workload 
related to coordination and communication, teams have the 
potential of offering greater adaptability, productivity, and 
creativity than any one individual can offer [1]. 

Backup behavior is a critical coordination mechanism that 
teams employ to reduce the risk of errors and maintain 
performance. Backup behavior refers to “the extent to which 
team members help each other perform their roles” [2]. Team 
members may provide different forms of back up, such as 
assisting the teammate who is behind in his or her work in 
performing a task, completing a task for the team member 
when an overload is detected, helping a fellow team member 
correct performance-related mistakes, and providing resources 
or supplies [2, 3]. 

Despite the importance of backup behavior, limited research 
has been devoted to quantitatively investigating its impact on 
overall team performance. In this study, we used 
discrete-event simulation (DES) to model the teamwork of 
operators during supervisory control of multiple robots, 
predict their performance and explore the role of backup 
behavior in team coordination. It is the first quantitative model 
of backup behavior. 

DES has been used to model a single operator’s supervisory 
control of multiple robots in previous research, where the 
robots requesting assistance are thought of as customers 
waiting in queues and the operators are thought of as servers 
[4-6]. Many of the interesting teamwork problems cannot be 
solved analytically using queuing theory since some of the 
strict assumptions necessary for closed-form solutions do not 
hold. However, it is possible to use DES to overcome the 
limitations of analytical models. More importantly, DES 
modeling has the advantage of capturing the process and 
dynamics of teamwork, which is lacking in previous research. 
With simulation models, we can test and compare proposed 
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changes to the current system, or new designs of the system at 
a significantly lower cost than testing directly in real world. 

This study modeled the teamwork in a dyad during 
supervisory control of multiple robots. Since the operators 
were not differentiated by role or task, the term team was not 
used in the traditional sense [7]. This paper is organized as 
follows. Section II reviews previous research on teamwork 
and backup behavior. Section III introduces the key model 
constructs. Section IV presents the methodology, main results 
and observations from an experiment of teamwork during 
supervisory control of multiple robots. Section V describes the 
DES model built using the experiment data, as well as the 
comparison between model outputs and experiment results. 
Section VI explores the role of backup behavior using the 
DES model by varying task uncertainty, operator capability 
and the level of individual effort. Section VII contains a 
discussion of the results and conclusions. 

II. BACKGROUND  

A. Backup Behavior 
Backup behavior is critical to the effectiveness of 

teamwork. It is positively related to team performance when 
teams have a member with a large amount of workload [2]. 
Backup behavior can improve performance outcomes by 
redistributing the workload within the team. More importantly, 
backup behavior affects team processes to allow greater team 
adaptability in changing situations and environments. On the 
other hand, some research has found that backup behavior can 
be harmful when backup providers neglect their own tasks, 
especially when workload is evenly distributed [8]. 

In the behavioral markers of teamwork breakdowns 
proposed by Wilson et al. [9], backup behavior is identified 
through three aspects: 1) Did team members correct other 
team members’ errors? 2) Did team members provide and 
request assistance when needed? 3) Did team members 
recognize when one performed exceptionally well? In this 
study, we focused explicitly on the first two aspects of backup 
behavior. 

Backup behavior is closely related to other factors affecting 
teamwork. First, whether team members can shift the 
workload within the team is largely determined by the team 
structure. Second, backup behavior usually happens together 
with mutual performance monitoring and communication. 
When team members detect an error made by their teammates 
through mutual performance monitoring and communicate 
about it, backup behavior can then correct the errors. These 
are discussed in the later sections. 

B. Team Structure 
Team structure is an important factor hypothesized to affect 

team effectiveness [10]. One aspect of team structure is the 
“manner in which the task components are distributed among 
team members” [11]. How the team is structured is closely 
related to communication, coordination and team 
performance. 

The team structure that is suitable for a specific scenario 
largely depends on the task characteristics and resources 
available [12]. For a team of operators working together with 

multiple robots, two possible ways to organize the robots are 
as Sectors or as a Shared Pool [13]. In the Sector condition, 
each operator exclusively controls a portion of all the robots. 
In the Shared Pool condition, operators share the control of all 
the robots and service them as needed. Sector assignment, 
which is how modern day air traffic control is architected, can 
reduce the number of robots the operator must monitor and 
control. However, the Shared Pool condition offers a more 
flexible scheduling advantage of load balancing since any 
operator in the team can service any robot as needed, which is 
one important aspect of backup behavior. Previous research by 
Lewis and Wang et al. [10] investigated the effect of team 
structure in a Urban Search and Rescue (USAR) setting. 
Although there was no significant difference on performance, 
teams that shared the control of all robots were found to have 
slightly lower workload. In addition, for monitoring 
applications, the Shared Pool offers a redundant observer 
advantage, such that a second operator with partially 
overlapping perceptual judgments may detect problems 
missed by the first operator. 

C. Mutual Performance Monitoring 
Mutual performance monitoring is the ability to develop 

common understandings of the team environment and apply 
appropriate task strategies to accurately monitor teammate 
performance [3]. It usually involves behaviors such as 
identifying mistakes and lapses in other team members’ 
actions, and providing feedback regarding team member 
actions to facilitate self-correction. Research has shown that 
individuals may not be aware of their own performance 
deficiencies [14, 15]. Salas et al. [3] proposed that it is the 
information gathered through mutual performance monitoring 
that affects team performance by identifying errors or lapses, 
and this information, expressed through communication and 
backup behavior, boosts the team performance. 

D. Team Communication 
Mutual performance monitoring and backup behavior are 

usually facilitated by communication within the team [3]. 
Research about group decision making [16] shows that in 
effective decision-making groups, communication serves both 
promotive functions that facilitate sound reasoning and critical 
thinking as well as counteractive functions that prevent a 
group from making errors. Communication relates to building 
an accurate understanding of team members’ needs, 
responsibilities, and expected actions [12], which is the 
foundation for mutual performance monitoring. In addition, 
when an error or overload is detected, communication is often 
required for information exchange. Infrequent communication 
may not supply enough information to achieve desired levels 
of performance.  

On the other hand, communication takes time and carries a 
coordination cost. Research has investigated the negative 
effects of communication in terms of increased workload and 
decreased performance [12]. It contributes a part of process 
loss, which means team performance is lower than the 
combination of individual performance due to the extra work 
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on team coordination. MacMillan et al. [12] investigated the 
cost of coordination and communication in a team of six 
persons performing a joint task force mission of air-based and 
sea-based operations. They concluded that a lower need for 
coordination and a lower communication rate were associated 
with better performance.  

There is no simple answer to how much communication is 
appropriate, because it is impacted by factors such as task 
characteristics, team structure, level of workload, etc [17, 18]. 
While frequency of communication about task and team 
rapport relates to superior team performance, excessive word 
usage has a negative association with team performance [19]. 
From the aspect of supporting backup behavior, the 
effectiveness of communication depends on whether the 
communication is needed at the time. Communication causes 
backup providers to dedicate resources on it and thereby 
reduces the amount of resources that are available for other 
tasks [8]. If the workload is evenly distributed, spending too 
much effort to communicate and provide backup could be 
harmful. If the workload is not evenly distributed, the benefits 
of backup behavior may outweigh the losses resulted from 
communication. To achieve effective team performance, 
teams should communicate adequately and effectively, using 
backup when needed. Conversely, teams should communicate 
relatively little when backup is not needed. 

III. DES MODEL OF MULTI-HUMAN MULTI-AGENT TEAM 
The key constructs of DES models are events, arrival 

processes, services processes, and queuing network structure. 
The DES model for this effort was constructed under the 
assumption that operators are acting in a supervisory control 
mode and the robots in the team are highly autonomous. 
Robots should function independently of the human most of 
the time, and require human interaction only intermittently. 
Operators function as servers in the queuing model and serve 
the events generated from the robots. The overall framework 
is shown in Fig.1. 

 Fig. 1. Overview of the DES Model 
 
The events generated from the robots enter the queue and 

wait to be served when the operators are busy. Operators 

select the next event to be served from the queue. This task 
assignment process is affected by the team structure of 
operators. After the events are served, the model generates 
performance outputs, which can be compared with empirical 
data. Communication between the teammates is modeled as 
two parts. Baseline communication happens with a random 
interarrival time. The other part of communication happens 
during  task assignment and error correction. 

A. Arrival Process of Robot-Generated Events 
Robot-generated events arise due to the nature of the 

mission and robot capability [5], such as detecting a victim or 
getting stuck and needing operator intervention. An event 
arrives to the system and stays in a queue for a time T. An 
event is then either served by the operator or exits the queue 
without being served if it waits longer than T. Unlike 
independent arrival processes in many queuing systems, the 
arrival of robot-generated events usually depends on the 
system status. To model the dependent arrival process, we 
limit the number of active events in the system associated with 
each event stream to be one at any time. In other words, a new 
event is generated from this stream only if there is no event 
from the stream in the queue or being served. The interarrival 
times of events are between the completion of 
service/reneging from the queue and the arrival of the next 
event. These interarrival times are described by a random 
variable Λ!, where i stands for event stream i. 

Sometimes, events generated are not identical. In this 
situation, a random variable !  following a multinomial 
distribution is used to describe the categories of events. New 
events are generated according to the interarrival time Λ! and 
assigned an event category from !. 

B. Service Process of a Single Operator 
Each event is served for a service time described by random 

variable ! . The service process typically involves several 
steps. In this case, the service time ! = !! + !!+. . .+!! , 
with !! being the time required for step i. The time an operator 
spends working on an event is associated with an opportunity 
cost of missing other important events waiting in the queue. 
Limiting the service time on one event may result in an 
increase on the number of tasks processed. Although the error 
rate may increase, it is possible that the overall mission 
performance is improved. This could be modeled by making 
the event exit from the server when the time limit is reached. 
In this situation, an output from processing this event may not 
be generated due to the shortened service time. 

The queuing policy determines the order in which multiple 
events that are waiting in the queue are served. Several 
common ways to pull an event from a queue include: 
First-Come-First-Serve, Last-Come-First-Serve and Random 
Selection. They can be used in the DES model according to 
characteristics of different task scenarios. 

C. Team Structure and the Shift of Workload 
Queuing networks are systems with multiple queues and 

service centers that are connected by customer routing. By 
connecting queues and service centers in different ways, 
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various team structures can be modeled. For teams organized 
in the Sector condition, each operator has his or her own 
queue. Robot-generated events enter the queue of one operator 
according to the task assignment, which is determined before 
the start of mission. Since operators only pull events from 
their own queue to serve, shifting of workload is impossible. 
For teams organized in the Shared Pool condition, events 
generated from the robots all enter the same queue, and 
operators pull events from this single common queue to serve. 
In this case, shifting of workload is possible. 

In the literature of queuing theory, whether to have a single 
common queue or multiple separate queues has been 
investigated. For a queuing system of s servers with Poisson 
arrival process and Exponential distributed service time, 
comparison has been made between having s queues and one 
single common queue based on the steady-state average 
waiting time. It was proved that, with the same arrival rate and 
service rate, the system with multiple servers and a single 
common queue has a shorter average waiting time than 
assigning a separate queue to each server [20]. The main 
reason for this advantage is the shifting of workload between 
multiple servers enabled by the single queue. Pooling multiple 
queues into a single queue may not always be beneficial 
[21-23]. In operator teams that supervise multiple robots, 
factors such as differences in individual capability, uncertainty 
in task load and individual level of effort may impact the 
choice of team structure. 

D. Mutual Performance Monitoring and Communication 
In our DES model, mutual performance monitoring is 

modeled as a higher probability of correcting an error when 
there is communication. With communication, an operator is 
able to correct his teammate’s errors, in addition to his own 
errors. However, as discussed previously, communication has 
been shown to have both a positive and negative influence on 
team performance.  

We modeled communication by separating its impact into 
positive and negative aspects. Theoretically, performance 
improves when positive impact outweighs the negative impact 
and vice versa. From the negative aspect, communication time 
is modeled as process loss. When there is communication 
during the service process, the service time is extended by the 
duration of communication. If the communication is too often 
or too long, number of services completed within a certain 
time is decreased. From the positive aspect, the benefit of 
communication is modeled together with mutual performance 
monitoring. When an error is detected, it is corrected with a 
probability P (Correction) = p without communication. If a 
communication event happened at the time, the probability is 
increased so that P (Correction) = p + p’. 

IV. MULTI-HUMAN MULTI-ROBOT TEAM EXPERIMENT 
This experiment investigated the effect of team structure 

and scheduling notification on participants’ team performance, 
workload and communication in an Urban Search and Rescue 
task. Participants supervised multiple simulated robots, 
manipulating and viewing the imagery the robots provided in 

order to detect and mark the locations of victims. Empirical 
data were collected to obtain insight into teamwork during 
supervisory control of multiple robots and support the 
development of a simulation model. 

A. Participants 
The study, IRB approved, adhered to ethical guidelines for 

the treatment of human participants. A total of 48 participants, 
19-47 years old, participated in the experiment. The average 
age was 26.6 years, with a standard deviation (SD) of 5.5. 
Among them, 19 were female and 29 were male. Thirty-three 
of the participants were undergraduate or graduate students, 
and 15 had other occupations. Twenty-two of the participants 
did not play video games regularly. The average time playing 
video game per week for the remaining 26 participants was 4.1 
hours (SD = 4.9). The correlation between hours spent on 
video games and average individual performance was not 
significant (r = 0.129, p = 0.354). Of all 24 teams formed by 
the 48 participants, team members in four teams knew each 
other before the experiment. The other 20 teams were formed 
by strangers. 

B. Independent Variables 
 A 2 X 3 mixed design was used to evaluate team structure 

(2 levels) and schedule notification (3 levels). Team structure 
was a between-subject variable with 24 participants assigned 
to one of the two types of team structure: 

--In Sector (S) teams, each participant controlled half of all 
the robots, for a total of 12 robots each. Locations of their 
teammates’ robots were shown on the map, but video feed 
from their teammates’ robots could not be seen. 

--In Pool (P) teams, two participants shared the control of 
all the robots. They were able to see the video feed of all 
robots and control any robot not under the control of a 
teammate. 

The level of interdependence was not high in both team 
structures. Independent works of team members were 
combined to represent team output [24]. However, Pool teams 
allowed more coordination and communication between the 
team members comparing to Sector teams. 

The second scheduling variable evaluated the utility of a 
cue indicating that attention should be switched to a different 
robot. This variable is of interest because previous work in 
automated visual search task allocation for single 
operator-multiple unmanned vehicle environment has shown 
that automated scheduling notification can improve operator 
performance in terms of probability of detection for overall 
mission and decrease workload by influencing switching times 
[22]. This form of scheduling notification was hypothesized to 
be beneficial also in the context of team scenarios, where 
resources were distributed across operators, who could benefit 
from recommendations for when to switch to new search 
tasks. For this experiment, scheduling notification was 
employed that issued text notification layered over the video 
panel and a beeping sound at an appropriate time to cue the 
participant to interrupt the current search pattern for one robot 
and switch to a different robot. 

Each participant completed one session with each level of 
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the scheduling notification. The order these three levels were 
experienced was counterbalanced across participants. The 
three levels of scheduling notification were: 

--Off condition, no cue was administered. No decision 
support was provided. 

--Suggested condition gave a text notification on the 
interface with a beeping sound when the participant spent 
more than 30 seconds on a robot. Participants were trained that 
the cue signaled that attention should be switched to a 
different robot. However, this cue can also be ignored. 

--Enforced condition also gave the cue when the participant 
spent more than 30 seconds on the same robot, but also, after 
another 5 seconds had elapsed with the same robot, 
automatically switched to another randomly selected robot.  

Thirty seconds was chosen as the threshold criteria based on 
a previous study [10, 25, 26]. In previous studies on visual 
search tasks [25], the possibility of finding a target was shown 
to decrease as more time was spent on the visual search task. 
The probability was estimated to be 0.8 for 26 seconds spent 
on searching, and then declined. In another experiment for 
USAR tasks [10], the mean time from a robot being selected 
to a victim being marked under autonomous control was 
approximately 35 seconds. We selected 30 seconds as the 
threshold so that the participant was given a reasonable 
amount of time to finish the task if a victim was successfully 
located and yet was prevented from spending too much time 
on a low probability search task if the participant failed to 
locate the victim. This threshold was validated in pilot tests as 
well. 

C. Testbed 
USARSim, a robotic simulation performing Urban Search 

and Rescue tasks [27], was used to provide the underlying 
simulation for the testbed. MrCS (Multi-robot Control 
System), a multi-robot communications and control 
infrastructure with an accompanying user interface was used 
as the control interface. MrCS provided facilities for starting 

and controlling robots in the simulation, displaying camera 
and laser range finder output, and supporting inter-robot 
communication through Machinetta, a distributed multi-agent 
system developed at Carnegie Mellon University [28]. 

 
Fig. 2. Map based on Occupancy Grid 
 

In MrCS, each robot was capable of updating a map, 
planning its routing and sending video feed to participants. An 
occupancy grid was used to represent the joint robot team 
knowledge of the environment and available information 
about the planned paths of other robots, as shown in Fig. 2. 
Possible locations were generated and filtered based on the 
expected information gain for being at that location. Edges 
were generated between locations if there was a sufficiently 
high possibility to move between the locations. A 
branch-and-bound search was performed across the network of 
possible locations and edges for the path that maximized the 
expected information gain. Plans were allowed to backtrack 
with no additional value added for visiting a location multiple 
times. When a robot finished planning, it shared its planned 
path with some nearby robots to allow them to both avoid 
collisions and search different areas. 

MrCS was displayed on a dual display computer as shown 
in Fig. 3. The robot camera list on the left screen shows 
thumbnails of camera feeds. Video panel shows a video feed 
of interest. The teleoperation panel allows teleoperation and 
camera pan and tilt. The right shows the current area map with 
the positions of robots, and allows participants to mark the 

locaFig. 3. Interface for Controlling Robots 
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tion of victims.  
In this experiment, robots were started automatically in 

different regions and explored the environment based on an 
autonomous path planner. The participants’ tasks were to 
identify as many victims as possible and mark their locations 
on a map. When a victim appeared in the camera of a robot 
and was detected by the participant, he or she could select a 
robot either from the robot camera list or by clicking the icon 
of the robot on the map. When a robot was selected, the 
thumbnail of its camera was highlighted with a thick black 
border, the video feed from its camera was shown in the video 
panel, and its field of laser was highlighted on the map. The 
participant could stop the selected robot and move the robot 
manually using the teleoperation panel to bring the victim 
back into the camera view or fine tune the robot’s position if 
necessary. The participant could then double click on the map 
to mark the position of this victim. 

If the participant wanted to delete the mark, he or she 
clicked the mark and pressed the Del button on the keyboard. 
When no robot was under direct control, the participant 
continued monitoring all the robots while exploring the 
environment until a new victim in a camera view was noticed. 
Most of the time robots navigated using autonomous path 
planning by default, and the participant only needed to 
monitor the thumbnails of video feeds. However, the 
participant could also choose to manually control the robots 
using the teleoperation panel to send them to a specific 
unexplored place. 

The team members were located in the same room, each 
with one display station. The stations were located so that it 
was difficult to view the teammates’ display in detail, 
although quick glances were allowed. For Pool teams, 
participants could see video feeds and locations of all robots. 
The status of the robot was shown on top of each thumbnail of 
camera view, as highlighted in Fig. 3. 

The default status was AUTONOMOUS, which means the 
robot was navigating automatically. When one of the team 
members was teleoperating the robot, its status was changed to 
TELEOP on both team members’ display. As a result, the 
other team member would know that this robot was controlled 
by his or her teammate. Conflict may happen when two 
operators tried to teleoperate the same robot, which then 
required verbal communication between team members. In 
Sector teams, video feeds and locations of 12 robots were 
shown on the display. In both team structure conditions, 
participants could see their marks and their teammates’ on the 
map in different shades of red. Participants could 
communicate with their teammates verbally with no 
restrictions. 

Scheduling notification was administered by layering text 
on top of the video feed in the video panel together with a 
beeping sound generated by repeating the Windows system 
default beep sound for five seconds. In Off condition, there 
was no scheduling notification. In Suggested condition, 
participants could choose to follow the notification and move 
on to a new robot, or to ignore it and stay with the current 
robot. If ignored, the text and the beeping sound lasted for five 

seconds and then disappeared. No more notification would be 
administrated afterwards. For the Enforced condition, the 
system would switch to another randomly selected robot five 
seconds after the original notification. Whenever a new robot 
was selected, either by the participant or the system, the 
previous robot would continue to navigate using autonomous 
path planning. The new robot selected was in autonomous 
mode by default. The autonomous path planning would stop 
only if the participants chose to teleoperate. 

D. Procedure 
The experiment began with a 15-minute training session 

prior to three 25-minute test sessions. A training session 
allowed the participants to practice the operation of GUI, 
especially teleoperation. Enforced scheduling notification was 
used during this training session because it was the most 
complex one among three conditions. No training for 
communication strategy was provided. Participants were 
tested in groups of two in the same room. Each participant 
controlled either 12 (Sector) or all 24 (Pool) robots, depending 
on their team structure assignment. Each pair of participants 
performed all three scheduling notification conditions. The 
three conditions were randomized and counterbalanced to 
limit any learning effect. Audio and screen recordings were 
collected during the experiment. 

E. Dependent Variables 
Dependent variables included task performance metrics, 

operation measures, communication as a team measure, and 
subjective workload. All the dependent variables are 
summarized in Table I, along with their definitions.   

 
TABLE I 

DEPENDENT VARIABLES 
Category Dependent Variables 
Task performance 
metrics 

Found: number of victims marked in the correct 
position 
Error: number of marks in the wrong position 
Deletes: number of marks deleted 
Missed: number of victims that appeared in the 
camera but were not marked 

Operation 
Measures 

Teleoperation duration: length of teleoperation 
period before marking victim or robot selection 
Teleoperation frequency: number of 
teleoperations 
Total teleoperation time: total amount of time 
spent on teleoperation 
Display-to-mark time: time from victim 
appearing in the camera to being marked 
Select-to-mark time: time from robot selection to 
victim being marked 

Team Measure: 
Communication 

Communication time: total time spent 
communicating with team member 

Workload NASA-TLX rating 
 
The criterion for a successfully marked victim was that the 

position of the mark was within one meter of the true position 
of the victim, which was the same criterion as in the study of 
Lewis et al. [10]. In order to find the time when a victim 
appeared in the camera, we drew the visible areas of all 
victims using ray tracing. If the robot was in the visible area 
for a victim, and its field of view contained the victim, this 
victim was declared visible on this robot’s camera. By 
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calculating these quantities, we obtained the number of 
victims missed, and recorded the display-to-mark time. 
 Sometimes, participants deleted marks when a victim was 
not marked accurately or was marked more than once. 
Participants’ actions of marking, deleting as well as 
teleoperation were recorded in the system log, and used to 
calculate the dependent variables. Total communication time, 
average duration and frequency were measured in both team 
structures. Subjective workload ratings were obtained through 
the NASA-TLX [29], which is a rating along six sub 
dimensions. The dependent variables were analyzed using 
either analysis of variance (ANOVA) or nonparametric tests if 
they did not satisfy the ANOVA assumptions of normality 
and/or homogeneity. 

F. Results 
This section introduces the main results of the experiment, 

including team performance and evidence of backup behavior, 
as well as communication and error correction. Detailed 
results on the experiment can be found in a previous paper 
[30]. This paper extends the previous one by building a DES 
model based on the experiment data and exploring several 
scenarios using the model, presented in section III, V and VI. 
Data from the training session was not included in the 
analyses. A significance level of 0.05 was used for the 
analyses. 
1) Task Performance  

Team structure had no significant impact on task 
performance in terms of number of victims found, number of 
errors, and number of victims missed. For number of deletes, 
Pool teams (Mean = 8.3, SD = 5.49) tended to delete more 
than Sector teams (Mean = 6.0, SD = 3.02), although the 
effect of team structure was not significant (Z = -1.838, p = 
0.066, r = -0.217). This indicates that Pool teams corrected 
themselves more often, because the marks were in wrong 
locations or duplicated marks were made for the same victim. 

Team structure had a significant effect on the total time of 
teleoperation (F(1, 138) = 10.68, p = 0.001, !!!  = 0.072). 
Sector teams (Mean = 1166.7, SD = 194.20) spent more time 
on teleoperation than Pool teams (Mean = 1055.4, SD = 
236.66) on average. No significant effect was found for 
teleoperation duration, teleoperation frequency, 
display-to-mark time or select-to-mark time. The interaction 
effect of team structure and scheduling notification was not 
significant on any of the dependent variables. 

Scheduling notification did not improve or decrease 
performance, but had an influence on working process. 
Scheduling notification had a significant effect on duration 
(F(2,138) = 21.64, p < 0.001, !!! = 0.239) and frequency of 
teleoperation (F(2,138) = 16.62, p < 0.001, !!! = 0.194), due to 
the way scheduling notification was implemented. With 
scheduling notification, the duration of teleoperation dropped 
and the frequency increased. The Enforced condition resulted 
in the shortest duration and highest frequency of teleoperation, 
followed by the Suggested and Off conditions. The effect of 
scheduling notification on total time of teleoperation was not 
significant (F(2,138) = 2.61, p = 0.078, !!! = 0.036). 

Scheduling notification helped the participants to notice and 
mark victims faster when they appeared in the camera, which 
is important for such a time-critical task environment. In 
Sector teams, scheduling notification had a significant effect 
on mean display-to-mark time (F(2, 69) = 3.91, p = 0.024, !!! 
= 0.102). The teams in Suggested condition had the lowest 
mean display-to-mark time (Mean = 88.0s, SD = 58.9s), 
followed by Off condition (Mean = 103.2s, SD = 59.1s) and 
Enforced condition (Mean = 128.6s, SD = 70.8s). The increase 
in time under the Enforced condition may be due to the 
interruption in the current operation and extra time to regain 
situation awareness.  

In Pool teams, the effect of scheduling notification was 
insignificant, suggesting that display-to-mark time was 
affected by team process. One team member could start 
working on a robot with a victim in view when the other was 
busy. For select-to-mark time, scheduling notification was 
found to have a significant effect (F(2, 138) = 24.77, p < 0.001, 
!!! = 0.264), shortening the time to finish a task. 
2) Evidence of Backup Behavior 

Subjective workload using NASA-TLX was analyzed using 
nonparametric tests. Box plots of subjective workload under 
different conditions are shown in Fig. 4. Mann-Whitney tests 
for the effect of team structure showed a significant effect on 
workload (Z = 2.036, p = 0.042, r = 0.170). Pool teams 
demonstrated lower workload on average than Sector teams. 
When analyzing each dimension of workload (mental demand, 
physical demand, temporal demand, performance, effort and 
frustration) separately, Pool teams had a significant lower 
rating on effort (Z = 2.148, p = 0.032, r = 0.179) and 
frustration (Z = 2.799, p = 0.005, r = 0.233). 

 
Fig. 4. Minimum and Maximum Workload under the Two Team Structures 
 

This was consistent with a previous study [10], in which a 
slight advantage in workload was observed favoring the Pool 
structure. One reason may be that in the Sector teams, there 
was no opportunity for backup. Furthermore, in Pool teams, it 
was possible to balance the workload according to operators’ 
individual abilities. When one operator was better at finding 
victims, it was possible he/she could share the burden of the 
less skilled teammate and did not report excessive workload. 
We analyzed the maximum, minimum and averaged workload 
of each team based on two team members’ individual 
workload ratings. This showed that maximum workload of the 
team members in Pool teams was significantly lower than in 
Sector teams (F(1, 68) = 6.6, p = 0.012, !!

! = 0.089), while 
minimum workload did not differ significantly, as shown in 
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Fig. 4. This result, combined with the significantly larger 
difference on individual performance (number of victims 
found) in Pool teams (F(1,68) = 4.72, p = 0.033, !!

! = 0.065) 
as shown in Fig. 5, suggests workload balancing processes or 
backup behaviors in Pool teams. 

 
Fig. 5. Difference on Individual Performance within Two Team Structures 
 
3) Communication and Error Correction 

During the experiment, participants were allowed to talk 
with each other. In such a high workload scenario, almost all 
the communication was mission-related. Some teams 
discussed what strategies to use when exploring the area, 
updated their status with the teammate, requested their 
teammates’ status or shared experiences about robot control. 
In contrast, some teams did not communicate at all. An 
analysis of the time (seconds) spent on communication 
showed that team structure had a significant effect (F(1, 66) = 
12.53, p < 0.001, !!! = 0.160). Pool teams (Mean = 177.7, SD 
= 198.74) expectedly communicated more than Sector teams 
(Mean = 53.44, SD = 80.97), on average.  

The four teams with members that knew each other before 
the experiment tended to communicate more comparing to 
other teams. The effect of team structure on communication 
time was still significant when this factor was controlled. Pool 
teams also had significantly longer communication duration 
(Mean = 5.80, SD = 5.04, F(1,66) = 5.85, p = 0.018, !!! = 
0.081) than Sector teams (Mean = 3.37, SD = 3.00), and 
higher frequency (Mean = 31.17, SD = 41.50, F(1,66) = 8.66, 
p = 0.004, !!! = 0.116) than Sector teams (Mean = 9.50, SD = 
13.46). Scheduling notification did not have a significant 

effect on communication time (F(2,66) = 0.01, p = 0.986, !!! < 
0.001).  

Further analyses on the correlation between communication 
with team performance and subjective workload revealed that 
communication time was moderately negatively correlated 
with errors (r = -0.309, p = 0.008). In other words, teams that 
communicated more tended to make fewer errors. This 
correlation existed even if we controlled for whether the 
teammates knew each other (r = -0.280, p = 0.018). This 
negative correlation between communication time and number 
of errors existed in Pool teams but not in Sector teams. This 
result, combined with the larger number of deletes in Pool 
teams, suggests that these participants engaged more in mutual 
performance monitoring, facilitated by communication. No 
significant correlation was found between communication 
time and number of victims found, number of deletes, number 
of victims missed, or subjective workload ratings. 

V. DES MODEL REPLICATION 
A DES model was built based on the process data and 

observations from the experiment to simulate team 
performance in these search and rescue tasks. In order to 
determine the model’s ability to describe the observed data, 
we compared the DES model outputs with the experimental 
results. Several data sets were recorded in the experiment and 
used to fit probability distributions applied in the model, as 
shown in Table II. 

Robot-generated events occurred when victims appeared in 
the robot camera. Although all the robots were the same type, 
they were started in locations with different victim density. 
We modeled the interarrival time of each robot individually to 
account for this difference. Another attribute of the 
robot-generated events was event identity (ID), which 
corresponded to different victims in the experiment. A victim 
already marked may appear in the camera again, which may 
be ignored or reprocessed to check for error. This was 
modeled by filtering the arrived events by their ID. Event ID 
was generated from a Multinomial distribution with n=34. 

TABLE II  
MODEL PARAMETERS AND DATA RECORDED DURING THE EXPERIMENT 

Parameters in the Model Distributions 
Exp: Exponential (λ), Log-N: Log-normal (µ, σ), IG: Inverse Gaussian (µ, λ) 

Arrival of Robot Generated Events 
    Interarrival Time of Each Robot 

 
IG(112.76, 5.07) 
IG (142.08, 5.34) 
IG (109.98, 4.61) 
IG(105.01, 8.76) 

 
Exp(43.21) 
Exp(51.81) 
Exp(55.80)
Exp(51.33) 

 
Exp(65.13) 
Exp(72.00) 
Exp(66.76) 
Exp(66.99) 

 
Exp(85.76) 
Exp(92.27) 
Exp(85.18) 
Exp(83.89) 

 
IG (101.55, 3.66) 
IG (88.20,4.38) 
IG (90.25,8.33) 
IG(93.76, 6.45) 

 
IG (116.56, 8.03) 
IG (106.79,10.09) 
Log-N(2.90, 1.99) 
Log-N(3.00, 1.82) 

    Duration Exp(λ: 15.31) 
    Event ID Multinomial (0, 0, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.5, 0.6, 0.7, 0.8, 1.1, 1.1, 1.3, 1.4, 1.4, 1.5, 1.8, 1.9, 2, 2.2, 

2.4, 2.9, 3, 5, 6, 6, 15, 17, 22.7) 
Service 
    Teleoperation Time 

 
Weibull (λ: 30.06, k: 0.87) 

    Probability of doing teleoperation Bernoulli (p: 0.38) 
Communication 
    Interarrival time 

 
Gamma (k: 0.23, θ: 139.74) 

    Duration Exp (λ: 50.88) 
    Probability to communication Pool: Bernoulli (p: 0.82); Sector: Bernoulli (p: 0.56) 
Error and Correction 
    Probability to make an error 

 
Pool: Bernoulli (p: 0.5); Sector: Bernoulli (p: 0.4) 

    Probability to correct an error Bernoulli (p: 0.4) 
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Fig. 6. Error Correction Process 
 

Performance measures generated from the model were 
number of victims found, number of errors, number of deletes, 
and number of victims missed. In this model, the event when a 
victim appeared in the camera was defined as a robot 
generated event. These events enter the queue and were then 
served by operators. Events that exit the queue without being 
served were measured as number of victims missed. Events 
processed were separated as victims found or errors based on a 
Bernoulli distribution. An event arrived with its ID already in 
the error list was defined as error detected in the model. In 
Sector teams, operators corrected one’s own error by a 
probability P(Correction) = p. In Pool teams, the common 
queue made it possible to detect and correct the teammate’s 
error as well as one’s own, during which communication was 
often required. This was modeled by an increase of 
P(correction) to p+p’ when communication happened during 
error correction. To correct an error, operators deleted a wrong 
mark and added a correct one, which was measured by number 
of deletes. The error correction process is presented in Fig. 6. 

Sector teams were modeled by using two different queues, 
each for one operator. Operator 1 served events generated by 
robot 1-12, and operator 2 served events generated by robot 
13-24. Pool teams were modeled by using a single common 
queue for the two operators. To model the scheduling 
notification, we added a time limit of 30 seconds to the service 
time. For Suggested condition, service was stopped at 30 
seconds if the operator followed the system recommendation 
with a probability 0.7. For the Enforced condition, service was 
stopped at 30 seconds. If the service was stopped, it was 
possible that the service did not generate a victim found or an 
error, the probability of which is set to be 0.6. 

We compared the team performance measures generated by 
the model with those collected in the experiment. One 
thousand trials were conducted using the DES model under 
each combination of team structure and scheduling 
notification mode. Figure 7 shows the comparison between 
simulation outputs and experiment results of Sector (Fig. 7a) 
and Pool (Fig. 7b) teams under Off notification condition with 
their standard error, and 95% confidence intervals with a 
modified degree of freedom [31] for the difference between 
simulation outputs and experiment results are included. These 
confidence intervals contain zero, indicating no significant 
differences between simulation outputs and experimental 
results. The comparison under Suggested and Enforced 
conditions showed similar results, as listed in Table III. These 
indicate that the model can successfully capture the essential 
elements of teamwork and replicate the experimental results 
on team performance under all team structure and notification 

conditions. The match between the model and the experiment 
provides a foundation for further exploration using the model. 

 
(a) Sector teams with Off scheduling notification

 
(b) Pool teams with Off scheduling notification 

Fig. 7. Comparison between model outputs and experiment results for 
performance in (a) Sector teams with Off scheduling notification, and (b) Pool 
teams with Off scheduling notification. 
 

Communication time as an important team process measure 
was also compared. Communication is difficult to model. 
Although there is much research about communication, it is 
unclear when people will communication, what they will 
communicate, and how that will impact the team performance. 
In the DES model, we simplified the communication as one 
special type of event.  As observed in the experiment, Sector 
teams communicated less than Pool teams because the 
operators were less interdependent. Based on this observation, 
we modeled the baseline communication as an exogenous 
process with an interarrival time estimated based on 
communication data in the Sector teams collected in the 
experiment. In Pool teams, we modeled another two 
components of communication in addition to the baseline 
communication: communication during task assignment and 
during error correction. Communication duration was modeled 
with an Exponential distribution estimated from experiment 
data. The comparison between simulation outputs and 
experiments results for communication time is shown in Fig. 8, 
which shows the DES model replicated the experiment results 
of communication time.  

 
TABLE III 
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COMPARISON OF MODEL AND EXPERIMENT 
 Measures Experiment Simulation Confidence 

Interval Mean SE Mean SE 

Su
gg

es
te

d 
Po

ol
 

Po
ol

 
Found 18.67 1.82 19.58 0.09 -3.09 4.91 
Error 8.17 1.34 7.80 0.13 -3.32 2.59 
Deletes 8.42 1.88 7.73 0.08 -4.84 3.45 
Missed 2.67 0.62 3.24 0.07 -0.81 1.94 

Su
gg

es
te

d 
Se

ct
or

 

Found 18.33 1.02 20.11 0.07 -0.47 4.02 
Error 7.00 1.27 7.04 0.13 -2.76 2.85 
Deletes 6.00 0.93 5.92 0.06 -2.13 1.97 
Missed 3.17 0.56 3.20 0.05 -1.21 1.27 

En
fo

rc
ed

 
Po

ol
 

Found 19.58 1.68 20.54 0.08 -2.75 4.66 
Error 6.75 1.34 7.29 0.13 -2.42 3.49 
Deletes 6.83 1.24 8.49 0.08 -1.08 4.40 
Missed 2.83 0.71 2.42 0.06 -1.96 1.15 

En
fo

rc
ed

 
Se

ct
or

 

Found 19.08 1.28 20.53 0.07 -1.38 4.28 
Error 7.33 1.50 7.01 0.14 -3.63 2.99 
Deletes 7.17 1.00 6.22 0.07 -3.15 1.25 
Missed 2.00 0.46 2.83 0.08 -0.19 1.85 

 

 
Fig. 8. Comparison between model outputs and experiment results for 
communication time 

VI. EXPLORING BACKUP BEHAVIOR USING THE DES MODEL 
With confidence in the DES model after the comparison, we 

simulated three scenarios using the DES model to further 
investigate backup behavior: the uncertainty in task load, the 
difference in individual capability and the level of individual 
effort. We wanted to observe whether the team members could 
back up each other and adapt to the uncertainty by providing 
assistance when needed. We analyzed the shift of workload in 
Pool and Sector teams under these scenarios.  

A. Uncertainty in Task Load 
Uncertainty in task load is an important factor that affects 

the balance of workload within the team. In the real world, 
tasks are rarely evenly assigned to team members. In the 
search and rescue scenario, operators do not know where 
victims are beforehand in order to make a plan for the search. 
As a result, teams have to adapt during the execution of tasks. 

In the original DES model, half of all the victims would 
appear in the camera of robot 1-12, and the other half in the 
camera of robot 13-24. To bring more uncertainty to the task 
load, m victims appeared in the camera of robot 1-12 where m 
is generated from a Uniform distribution, and the remaining 

victims appeared in the camera of robot 13-24. One thousand 
simulation trials were run.  

The percentage of events processed by operator 1, and the 
ratio of busy time of operators were compared in Pool and 
Sector teams (Fig. 9.). The ratio was calculated as the measure 
on operator 1 divided by the sum of two operators. A ratio 
close to either zero or one indicates the overload of an 
operator. As shown in Fig. 9, the percentage of events 
processed by the two operators is scattered in Pool teams. In 
Sector teams, the percentage increased as the number of 
victims appeared in robot 1-12 increased. The ratio of busy 
time showed a similar pattern with a larger deviation.  

The simulation results can be interpreted from two aspects. 
First, since operators share the control of all robots, it does not 
matter whether one group of robots found more victims. 
Backup behavior can be easily performed to balance the 
workload. In other words, Pool teams show adaptability with 
the uncertainty in task load. On the contrary, in Sector teams, 
an operator experiences more workload if the robots find more 
victims. His or her teammate cannot offer much help even if 
idle. 

Second, Pool teams have a larger standard deviation for the 
ratio of events processed and ratio of busy time comparing to 
Sector teams. Sector teams could have an advantage in 
maintaining a reasonable workload balance when the task load 
has little variability. However, when there is large uncertainty 
in task load, Pool teams have an advantage because of the 
adaptability enabled by backup behaviors. 

 
      Pool                                                         Sector 

Fig. 9. Impact of Task Load Uncertainty 

B. Difference in Individual Capability 
Difference in individual capability was simulated by varying 

the service time of operators. The distribution for operator 1 
was unchanged. The service time of operator 2, originally the 
same for both, was increased from two to six times of the 
original. The percentage of change on the number of victims 
found, percentage of change on the number of victims missed, 
the ratio of events processed by operators, and the ratio of 
operator busy time were compared. These ratios were 
calculated as the measure of operator 2 divided by operator 1. 
The busy time refers to the total service time. Although 
operators were sometimes actively searching instead of just 
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monitoring during their idle time, this free searching time is 
not included in the model output. We assumed that the two 
operators put similar effort into free searching. Results 
generated from the model are shown in Fig 10. 

 
(a) Sector 

 
(b) Pool 
Fig. 10. Impact of Individual Difference 

From the results we can see Sector (Fig. 10a) teams and Pool 
(Fig. 10b) teams react differently. In Sector teams, the busy 
time of operator 2 increased rapidly to around three times of 
operator 1, while the number of events processed by operator 
2 was a little bit less than that of operator 1 with the increase 
of service time. This means operator 2 had to work longer 
because of the slow service and the lack of help from operator 
1. 

In Pool teams, because the two operators shared the control 
of all robots, it was easier to shift the workload within the 
team. This was confirmed by the DES model outputs. In Pool 
teams, the busy time of operator 2 increased only to around 
1.5 times of operator 1, while the number of events processed 
by operator 2 was much less than that of operator 1 due to the 
increase of service time. This suggested a shift of workload in 
Pool teams when one operator was overloaded due to his/her 
individual capability. The shift of workload also had an impact 
on team performance. The percentage of change on the 
number of victims found was small in both types of teams. 
However, Pool teams had a slower increase on the number of 
victims missed comparing to Sector teams. Pool teams had an 
advantage through backup behaviors, which could shift the 
workload within the team when one operator was slower. 

C. Individual Level of Effort 
Although Pool teams have an advantage through backup 

behaviors, they may be affected when some individuals in the 
team expend less effort when working collectively. In addition 
to idle and busy states, we simulated individual level of effort 
by adding a lazy state for operator 2, during which he or she 
was neither working on tasks nor responding to tasks in the 
queue. If the operator is idle, he or she enters the lazy state 

with probability P(lazy). The lazy state lasts for five seconds. 
Fig. 11a shows the impact on the average percentage of events 
processed by operator 1 in Pool teams when P(lazy) of 
operator 2 changes from 0.2 to 0.6. As P (lazy) increases, the 
curve of operator 1 is shifted upwards. In other words, 
operator 1 processes more events on average if operator 2 is 
lazy. 

 
(a) Simulated results

 
 (b) Concept illustration 
Fig. 11. Impact of Reduced Individual Level of Effort 
 

With reduced individual level of effort, the degree to which 
Pool teams are better than Sector teams in terms of balancing 
workload depends on how the tasks arrive. Fig. 11b is a 
simplification of Fig. 11a to illustrate the concept. We 
represent average percentage of events processed by operator 
1 in Pool teams as !! , and in Sector teams as !! . In the 
shadowed area of Fig. 11b, max !! , 1 − !! > max  (!!, 1 −
!!), which means workload is more evenly distributed in 
Sector teams. Beyond this range, max !! , 1 − !! <
max  (!!, 1 − !!), which means workload is better balanced in 
Pool teams. Based on this, we can conclude that Sector teams 
are better when the tasks arrive to the two operators evenly, 
especially when there is reduced individual level of effort in 
Pool teams. However, Pool teams deal with extreme 
difference in task load better than Sector teams, even with 
reduced individual level of effort. 
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VII. DISCUSSION AND CONCLUSION 
In the experiment, participants’ mean ratings indicated 

lower workload with the Pool structure as compared to the 
Sector structure, even though task performance was similar 
across the two types of team structure. Pool teams also 
communicated more and balanced workload among team 
members. These conclusions were supported by the lower 
maximum workload and larger difference on individual 
performance in Pool teams. This suggests the reduced 
subjective workload in the Pool condition occurred because 
teammates could provide backup if needed. In addition, the 
shared control of robots promoted communication in teams 
under the Pool structure, which was also good for task 
performance since teams with more communication tend to 
make fewer errors. The reason may be that they corrected each 
other via communication, which led to fewer errors. 

A DES model based on queuing theory was constructed to 
simulate the teamwork in supervisory control of multiple 
robots. The outputs from the model replicated the experiment 
results on team performance measures. Backup behavior was 
investigated by varying the uncertainty in task load, the 
individual capability and the individual level of effort. In all 
scenarios, Pool teams show an advantage on balancing 
workload through backup behaviors. Although Pool teams 
have an advantage on balancing workload as suggested by 
both the experiment and the DES model, we must consider 
other factors, like team strategies and coordination cost when 
deciding which team structure to use. Pool teams gain the 
advantage of balancing workload with the cost of increased 
coordination on task assignment. In our simulation, we found 
that the advantage of backup behaviors is meaningful only 
when the task load is unevenly distributed. This conclusion 
based on simulation results is consistent with several empirical 
research on backup behaviors [8, 32]. If the task load is evenly 
distributed with low uncertainty, backup behaviors are not 
necessary. 

Team members also employed certain team strategies to 
cope with the increased coordination cost. In the experiment, 
we observed that some operators in Pool teams would preplan 
on which robots to control via verbal communication, even if 
the plan changed during the task execution. For example, 
some divided the robots by robot ID, and some divided by 
robot location. Other operators reported the robot ID to their 
teammates whenever they started on a new robot. These team 
strategies reduced the effort for team coordination while still 
leaving a possibility for balancing workload. However, as the 
team size increases, we would expect an increase on the cost 
and difficulty of coordination. In addition, reduced individual 
level of effort is easier in Pool teams than in Sector teams. 
With reduced individual level of effort, the advantage of Pool 
teams is diminished. To better reflect the tradeoffs of these 
factors, these factors will be modeled in future research to 
support the design of teams. 

The DES model can be used as a useful and efficient tool to 
assess the impact of change on performance and share of 
workload under different team structures. In this study, a 
dyadic team was modeled. In the future, we would like to 
investigate whether this model structure can be extended for 
teams of three or more members.  
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